Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume

نویسندگان

  • Luxia Liu
  • Yong Pang
  • Zengyuan Li
  • Shengxi Liao
چکیده

A critical component of the forest ecosystem, the understorey supports the vast majority of wildlife habitat and total ecosystem floristic diversity. Remote sensing data have been developed to provide information at different scales for surveys of forest ecosystems, but obtaining information about the understorey remains a challenge. As rapid and efficient tools for forest structure attribute estimation, Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) have attracted much attention. We examine the relationship between ALS and TLS data and detect changes in the forest understorey caused by forest-tending events in the study area. We conducted trials in five plots within a young Khasi pine (Pinus kesiya Royle ex Gord.) plantation in Yunnan province, China, before and after forest tending. We collected bi-temporal ALS data in this area and TLS data from 10 scanning stations. Canopy height profiles were retrieved from ALS and TLS data, and understorey material volume retrieved from filled TLS voxels volume agreed well with the understorey point clouds percentile distribution (PD) obtained from ALS data. The PD value for the understorey from ALS multiplied by the percentage of ALS return points in the overstorey had a stronger correlation (R2 = 0.90) with the TLS-derived understorey material volume than did the ALS PD value for the understorey only (R2 = 0.71). Taking the effect of the overstorey into consideration will improve evaluations of forest understorey parameters from ALS data. This study confirmed the potential of TLS as a validation tool to assess the accuracy of forest understorey material volume estimation at large scales using ALS data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Change in Burnt Landscapes using a Terrestrial LiDAR System

A Terrestrial LiDAR system or Terrestrial Laser Scanner (TLS) was used to detect changes in burnt landscapes. Since wildfires are a common occurrence in the Australian landscape, prescribed burns are routinely carried out by land management agencies and government departments. These prescribed burns reduce the fuel load which decreases the severity of subsequent unplanned wildfires. Recent adva...

متن کامل

Tree Height Growth Measurement with Single-Scan Airborne, Static Terrestrial and Mobile Laser Scanning

This study explores the feasibility of applying single-scan airborne, static terrestrial and mobile laser scanning for improving the accuracy of tree height growth measurement. Specifically, compared to the traditional works on forest growth inventory with airborne laser scanning, two issues are regarded: "Can the new technique characterize the height growth for each individual tree?" and "Can ...

متن کامل

Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study

This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this in...

متن کامل

Assessing Metrics for Estimating Fire Induced Change in the Forest Understorey Structure Using Terrestrial Laser Scanning

Quantifying post-fire effects in a forested landscape is important to ascertain burn severity, ecosystem recovery and post-fire hazard assessments and mitigation planning. Reporting of such post-fire effects assumes significance in fire-prone countries such as USA, Australia, Spain, Greece and Portugal where prescribed burns are routinely carried out. This paper describes the use of Terrestrial...

متن کامل

The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017